

Opportunities for Canada

The bioeconomy sector offers great potential for Canada by offering the following:

- Economic growth and new market opportunities
- Reduction of our carbon emissions and footprint
- Technological Innovation
- Positioning Canada as a leader in this space

Canadian Bioeconomy Industry Needs

Feedback from Industry indicates that companies need:

- Financial support and investment during the long interval from pilot scale to commercial demonstration to full scale plant operation
- Timely access to experts and equipment for problem solving
- Development of specifications and applications for final products
- Collaborations and partnerships that lead to market access

Federal Government Investments

Because of its potential for growth, Federal Government Investment is significant in the Bioeconomy through

Government Funded programs and initiatives

 Examples: Agricultural Clean Technology Program, Sustainable Development Technology Fund, Impact Canada, Business Development Initiatives for Clean Technology, Clean Growth Program

Government R&D laboratories and programs

 Examples: National Research Council Canada programs, Natural Resources Canada Office of Energy Research and Development

to address the needs of the Canadian Bioeconomy industry

Over 70% of biotech companies access the SR&ED program

About 60% of biotech companies access IRAP

Government of Canada Bioeconomy Ecosystem

Natural Resources Canada Innovation, Science, & Economic Development

Sustainable Development Technology Canada

National Research Council Agriculture and Agri-Foods Canada

NRCan

- Policies and programs that ensure a sustainable resource advantage
- The Office of Energy Research and Development (OERD) coordinates energy (R&D) activities.

ISED

- Fosters a growing knowledge-based Canadian economy
- Supports the Clean Growth Hub, a portal for Canada's clean technology ecosystem

SDTC

- \$1.6B in funds from the Government of Canada since 2001
- Funds the development and demonstration of new sustainable development technologies

NRC

- Canada's research and technology organization
- Supports cleantech R&D across Canada and informs policies and standards for cleantech adoption

AAFC

 The Agricultural Clean Technology Program is a three-year investment (2018-2021) supporting clean technology activities across the innovation continuum

Budget 2018

\$1-10 million

\$10 million+

IRAP

Industrial Research Assistance Program

RDAs

Regional Development Agencies

SIF

Strategic Innovation Fund

TCS

Trade Commissioner Service

983 R&D clients* **BUSINESS** \$193M total revenues* INNOVATION The NRC's 3 core \$1,145.2M total expenditures* (\$770.7M roles within the **POLICY** RCs; \$374.5M IRAP) **Canadian Science**, SOLUTIONS Technology, and FOR \$389.2M G&C expenditures **GOVERNMENT Innovation** ecosystem 1,030 peer reviewed publications** ADVANCING 207 patents filed* KNOWLEDGE 1,669 active patents* * 2018-2019 / ** 2018

5 Divisions,14 Research Centres

DIGITAL TECHNOLOGIES	Digital Technologies	
EMERGING TECHNOLOGIES	 Advanced Electronics and Photonics Herzberg Astronomy and Astrophysics Metrology Nanotechnology Security and Disruptive Technologies 	
ENGINEERING	ConstructionEnergy, Mining and EnvironmentOcean, Coastal and River Engineering	
LIFE SCIENCES	Aquatic and Crop Resource DevelopmentHuman Health TherapeuticsMedical Devices	
TRANSPORTATION AND MANUFACTURING	Aerospace Automotive and Surface Transportation	

R&D Labs: 22 Locations Across Canada

Vancouver, BC

• Batteries, fuel cells ar

• Batteries, fuel cells and industrial tribology

Victoria and Penticton, BC

- Optical and radio telescopes
- Adaptive optics

microscopy

Edmonton, AB
• Nanotechnology, electron

Saskatoon, SK

• Plant biotechnologies and plant-growth facilities

Mississauga, ON (in progress)

- Clean energy materials
- Advanced materials for additive digital manufacturing and printed electronics

London, ON

 Additive manufacturing, product development, laser consolidation, micro-machining

Ottawa, ON

 Aerospace, vaccines, construction, quantum, photonics, machine vision, big data analytics, metrology, materials characterization and testing

Saguenay, QC

- Aluminium and multi-materials assembly
- Hybrid manufacturing (extrusions, forgings, castings)

Montreal/Boucherville/ Royalmount, QC

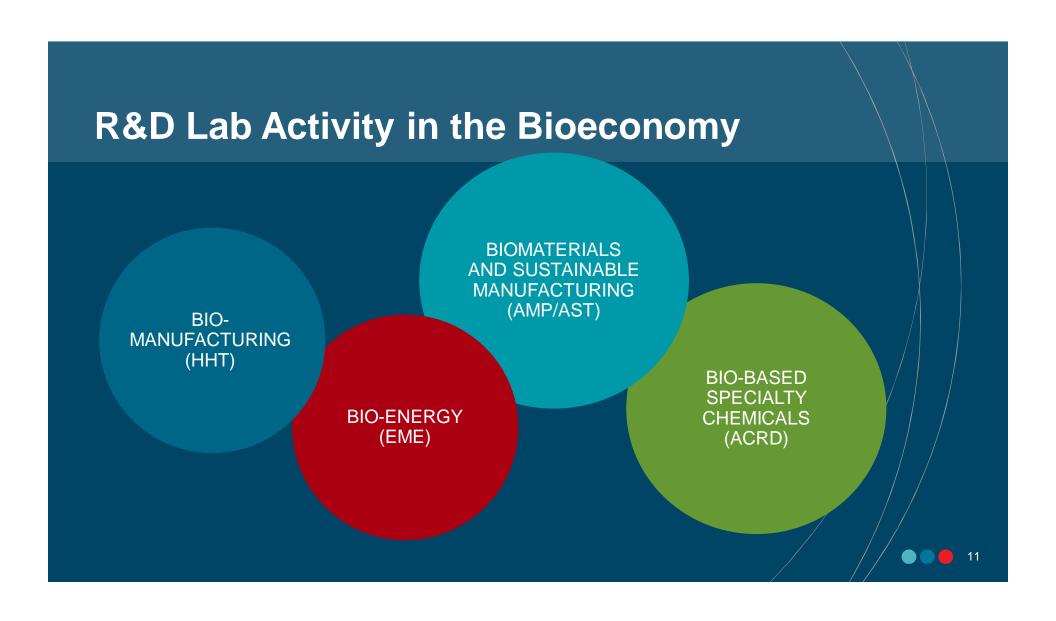
- Intelligent machining, robotics
- Medical devices, advanced biologics analytics, biomanufacturing pilot plant

Halifax. NS

- Photobioreactors, bioprocessing
- Natural product chemistry, bioactive characterization

Charlottetown, PE

• Natural product and functional ingredient development



St. John's, NL

- Ocean engineering
- Ice and vessel management

-10

Example: Agricultural Biotechnologies at ACRD

STRENGTHS

Agricultural Biotechnologies Microbial Profiling

Genomics &

Natural Products & Ingredients

Algal & Marine **Biotechnologies**

Bioprocessing & Bioproduction

Biomass Characterization

APPLICATIONS

Aquatic and Natural Products

Algae

- Algae carbon conversion
- Wastewater remediation
- · Seaweeds for ecosystem services
- Genomics and GLP cultivation
- Algae as nutrition

Ingredients and active components

- Food ingredient development
- Medical cannabinoids · In-vitro modelling
- Zebrafish models
- · Higher animal models

Natural product development

- Chemical authentication
- Extraction and formulation technologies

Bio-based Products and

Technologies

Microbial Fermentation

- Strain development
- Process development and optimization
- · Separation and purification
- Solid state fermentation
- Process scale up and production

Biocatalysis and Bioprocessing

- · Enzyme assisted processing
- Biotransformation and characterization
- · Biocatalysis and conversion
- Biopolymer synthesis
- Natural fibers

Nanomaterials

- Nanopolysaccharides
- Nanomaterial characterization and synthesis
- Applications R&D

Genomics and Plant Biotechnology

Genomics and Bioinformatics

- · Sequencing and bioinformatics
- · Genotyping and marker development
- Environmental, human health and agriculture metagenomics

Plant productivity, pathology and protection

- Abiotic and biotic stress
- Seed biology Photosynthesis

Plant Metabolism

- Systems biology
- Lipids, carbohydrates and protein
- Plant metabolic engineering

Plant Platform Technologies

- Cell-based technologies
- Double haploidy
- · Plant hormone profiling
- Controlled plant growth environments

Example: Industrial Biotechnologies at ACRD & EME

Microbial Production and Biosynthesis


Bioprocessing and Extraction Technologies

Chemical Synthesis and Conversion

Lipid Biotechnologies

Polysaccharide Nanotechnologies

Lignocellulosic Technologies

Industrial Research Assistance Program • NRC IRAP

\$293M

ANNUAL CONTRIBUTION FUNDING TO SMES

8,159

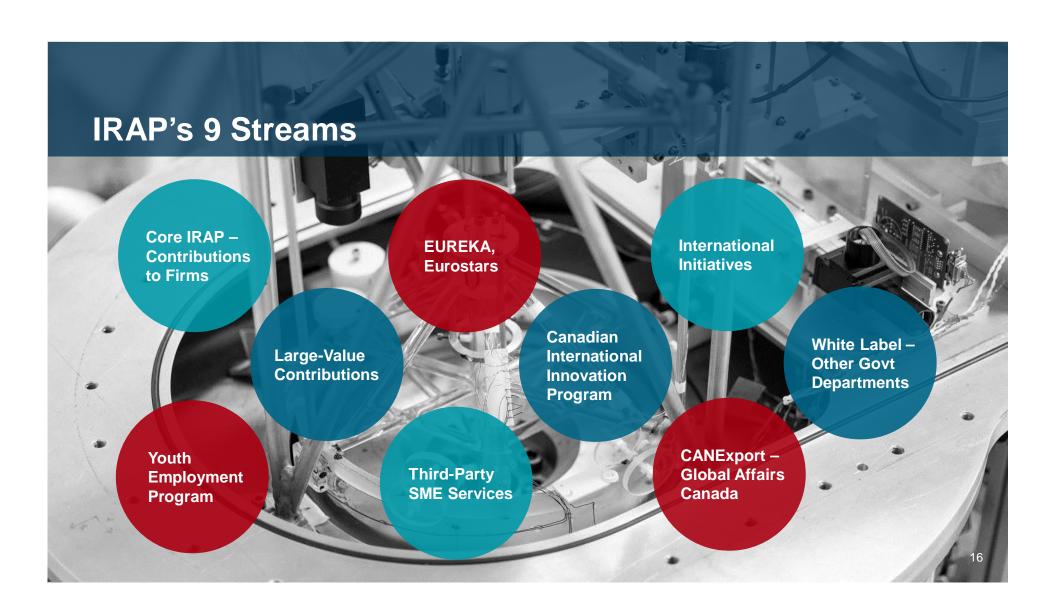
FIRMS RECEIVING ADVISORY SERVICES OR FUNDING

15,662

JOBS SUPPORTED IN SMES

Industrial Research Assistance Program • NRC IRAP

Provide advice,
connections, and funding
to help Canadian small
and medium-sized
businesses increase their
innovation capacity and
take ideas to market


Serve over 8,000
clients annually
(advisory services + funding)
across all industry sectors
and fund over 3,000 clients

Link innovative
Canadian SMEs to
global value chains
and support their growth
by providing access to
current technology and
business market intelligence
on priority industry sectors

Support youth with employment programs

Some NRC IRAP Biotechnology Clients

Develops and implements processes for making cellulosic biofuels.

A bio-refining technology company that refines various feedstocks with a pilot-scale bio-refinery (i.e. forestry and agricultural waste, sewer sludge).

A sustainable company leading the way in low carbon solutions for the biofuel industry with Carinata, a nonfood crop that can be grown anywhere.

Develops and sells sustainable ingredients for lubricants, cosmetics, etc. that outperform and are more cost-effective than their petroleum-based counterparts.

Summing Up

- IRAP can provide advice and funding to support your research and technology project.
- NRC labs can conduct collaborative research with you and provide access to facilities. Examples:
 - o ACRD agricultural biotechnologies
 - o EME industrial biotechnologies
 - o AST composite materials, bio-polymers, bio-plastics

THANK YOU

lain Stewart President, National Research Council of Canada

National Research Conseil national de

recherches Canada

